home *** CD-ROM | disk | FTP | other *** search
- /*
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that this notice is preserved and that due credit is given
- * to the University of California at Berkeley. The name of the University
- * may not be used to endorse or promote products derived from this
- * software without specific prior written permission. This software
- * is provided ``as is'' without express or implied warranty.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)exp.c 5.2 (Berkeley) 4/29/88";
- #endif /* not lint */
-
- /* EXP(X)
- * RETURN THE EXPONENTIAL OF X
- * DOUBLE PRECISION (IEEE 53 bits, VAX D FORMAT 56 BITS)
- * CODED IN C BY K.C. NG, 1/19/85;
- * REVISED BY K.C. NG on 2/6/85, 2/15/85, 3/7/85, 3/24/85, 4/16/85, 6/14/86.
- *
- * Required system supported functions:
- * scalb(x,n)
- * copysign(x,y)
- * finite(x)
- *
- * Method:
- * 1. Argument Reduction: given the input x, find r and integer k such
- * that
- * x = k*ln2 + r, |r| <= 0.5*ln2 .
- * r will be represented as r := z+c for better accuracy.
- *
- * 2. Compute exp(r) by
- *
- * exp(r) = 1 + r + r*R1/(2-R1),
- * where
- * R1 = x - x^2*(p1+x^2*(p2+x^2*(p3+x^2*(p4+p5*x^2)))).
- *
- * 3. exp(x) = 2^k * exp(r) .
- *
- * Special cases:
- * exp(INF) is INF, exp(NaN) is NaN;
- * exp(-INF)= 0;
- * for finite argument, only exp(0)=1 is exact.
- *
- * Accuracy:
- * exp(x) returns the exponential of x nearly rounded. In a test run
- * with 1,156,000 random arguments on a VAX, the maximum observed
- * error was 0.869 ulps (units in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
- /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
- /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */
- /* lntiny = -9.5654310917272452386E1 , Hex 2^ 7 * -.BF4F01D72E33AF */
- /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */
- /* p1 = 1.6666666666666602251E-1 , Hex 2^-2 * .AAAAAAAAAAA9F1 */
- /* p2 = -2.7777777777015591216E-3 , Hex 2^-8 * -.B60B60B5F5EC94 */
- /* p3 = 6.6137563214379341918E-5 , Hex 2^-13 * .8AB355792EF15F */
- /* p4 = -1.6533902205465250480E-6 , Hex 2^-19 * -.DDEA0E2E935F84 */
- /* p5 = 4.1381367970572387085E-8 , Hex 2^-24 * .B1BB4B95F52683 */
- static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
- static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
- static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
- static long lntinyx[] = { _0x(4f01,c3bf), _0x(33af,d72e)};
- static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
- static long p1x[] = { _0x(aaaa,3f2a), _0x(a9f1,aaaa)};
- static long p2x[] = { _0x(0b60,bc36), _0x(ec94,b5f5)};
- static long p3x[] = { _0x(b355,398a), _0x(f15f,792e)};
- static long p4x[] = { _0x(ea0e,b6dd), _0x(5f84,2e93)};
- static long p5x[] = { _0x(bb4b,3431), _0x(2683,95f5)};
- #define ln2hi (*(double*)ln2hix)
- #define ln2lo (*(double*)ln2lox)
- #define lnhuge (*(double*)lnhugex)
- #define lntiny (*(double*)lntinyx)
- #define invln2 (*(double*)invln2x)
- #define p1 (*(double*)p1x)
- #define p2 (*(double*)p2x)
- #define p3 (*(double*)p3x)
- #define p4 (*(double*)p4x)
- #define p5 (*(double*)p5x)
-
- #else /* defined(vax)||defined(tahoe) */
- static double
- p1 = 1.6666666666666601904E-1 , /*Hex 2^-3 * 1.555555555553E */
- p2 = -2.7777777777015593384E-3 , /*Hex 2^-9 * -1.6C16C16BEBD93 */
- p3 = 6.6137563214379343612E-5 , /*Hex 2^-14 * 1.1566AAF25DE2C */
- p4 = -1.6533902205465251539E-6 , /*Hex 2^-20 * -1.BBD41C5D26BF1 */
- p5 = 4.1381367970572384604E-8 , /*Hex 2^-25 * 1.6376972BEA4D0 */
- ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
- ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
- lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */
- lntiny = -7.5137154372698068983E2 , /*Hex 2^ 9 * -1.77AF8EBEAE354 */
- invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */
- #endif /* defined(vax)||defined(tahoe) */
-
- double exp(x)
- double x;
- {
- double scalb(), copysign(), z,hi,lo,c;
- int k,finite();
-
- #if !defined(vax)&&!defined(tahoe)
- if(x!=x) return(x); /* x is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
- if( x <= lnhuge ) {
- if( x >= lntiny ) {
-
- /* argument reduction : x --> x - k*ln2 */
-
- k=invln2*x+copysign(0.5,x); /* k=NINT(x/ln2) */
-
- /* express x-k*ln2 as hi-lo and let x=hi-lo rounded */
-
- hi=x-k*ln2hi;
- x=hi-(lo=k*ln2lo);
-
- /* return 2^k*[1+x+x*c/(2+c)] */
- z=x*x;
- c= x - z*(p1+z*(p2+z*(p3+z*(p4+z*p5))));
- return scalb(1.0+(hi-(lo-(x*c)/(2.0-c))),k);
-
- }
- /* end of x > lntiny */
-
- else
- /* exp(-big#) underflows to zero */
- if(finite(x)) return(scalb(1.0,-5000));
-
- /* exp(-INF) is zero */
- else return(0.0);
- }
- /* end of x < lnhuge */
-
- else
- /* exp(INF) is INF, exp(+big#) overflows to INF */
- return( finite(x) ? scalb(1.0,5000) : x);
- }
-